Lattices with Unique Complements

نویسنده

  • R. P. DILWORTH
چکیده

Introduction. For'several years one of the outstanding problems of lattice theory has been the following: Is every lattice with unique complements a Boolean algebra? Any number of weak additional restrictions are sufficient for an affirmative answer. For example, if a lattice is modular (G. Bergman [l](1)) or ortho-complemented (G. Birkhoff [l]) or atomic (G. Birkhoff and M. Ward [l]), then unique complementation implies distributivity and the lattice is a Boolean algebra. In spite of these results, I shall show here that the theorem is not true in general. Indeed, the following counter theorem is proved:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE STRUCTURE OF FINITE PSEUDO- COMPLEMENTS OF QUADRILATERALS AND THEIR EMBEDDABILITY

A pseudo-complement of a quadrilateral D of order n, n, > 3, is a non-trivial (n+l)- regular linear space with n - 3n + 3 points and n + n - 3 lines. We prove that if n > 18 and D has at least one line of size n - 1, or if n > 25 , then the set of lines of D consists of three lines of size n -1, 6(n - 2) lines of size n - 2, and n - 5n + 6 lines of size n - 3. Furthermore, if n > 21 and D...

متن کامل

The Macneille Completion of a Uniquely Complemented Lattice

Problem 36 of the third edition of Birkhoo's Lattice theory 2] asks whether the MacNeille completion of uniquely complemented lattice is necessarily uniquely complemented. We show that the MacNeille completion of a uniquely complemented lattice need not be complemented. Questions regarding the axiomatics of Boolean algebras led Huntington to conjecture , in 1904, that every uniquely complemente...

متن کامل

Reductions and Algorithms for Lattices with Complements

We present tractable algorithms for deciding the universal theories of lattices with different notions of complementation by reduction to more standard procedures. The reductions use basic structural properties of lattices. For Boolean algebras, generalised Boolean algebras and atomic distributive lattices we reduce to SAT-procedures. For Brouwerian algebras we reduce to the uniform word proble...

متن کامل

An equivalence functor between local vector lattices and vector lattices

We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010